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             Explicit Analytical Relations for Strain-controlled
  Rheodynamical Quantities in the Case

of Zener-Arrhenius Model
 I. Underlying relations

HORIA PAVEN*
National Institute of Research and Development for Chemistry and Petrochemistry - ICECHIM, 202 Splaiul Independentei,
060021, Bucharest, Romania

In order to point out the intrinsic peculiarities of thermorheodynamical behaviour of solid-like polymer
materials, the framework of a Zener - Arrhenius model is considered, the frequency or/and temperature
dependences being approached in the case of strain-controlled conditions. The complete set of the explicit
general relations providing the characteristic thermorheodynamical quantities (the storage, loss and absolute
moduli, as well as the loss factor, and the corresponding storage, loss and absolute compliances) is presented
in terms of meaningful rheological parameters including the low - and high frequency limit values of the
storage modulus, and the appropriate relaxation time. The underlying analytical relations are given in forms
suitable for direct numerical simulation of both isothermal frequency - dependence, and well as of isochronal
temperature - dependence circumstances.

Keywords: analytical relations, characteristic thermorheodynamical quantities, strain-controlled conditions,
Zener - Arrhenius model, isothermal and isochronal circumstances.

The ability of solid-like polymer materials to specifically
deform is a direct consequence of intrinsic mobility of their
molecular entities to accomplish typical motions including,
in the case of strain-controlled conditions, the relaxation
ones. Moreover, given the influence of the dynamic
deformation-driven level, as well as of those of frequency
and temperature dependences, the viscoelastic-like effects
are properly evidenced by the rheological quantities [1-5].

In fact, linear viscoelasticity allows for time dependence
in the rheological stress-strain relationships by considering
a linear function of stress and its derivatives with respect
to time to be equated to a linear function of strain and its
time derivatives [6-11].

Accordingly, the present article intend to clarify the
essentials of different relationships expressing the
frequency and temperature variation trends of
rheodynamical quantities, and to  provide an appropriate
characterization of the linear viscoelastic peculiarities of
rheological behaviour by using a “relaxation and
corresponding retardation” description in the framework
of a coupled Zener - Arrhenius model. Thus, the
consequences of the explicit general and characteristic
forms of the complete set of linear viscoelastic
rheodynamical quantities point out the frequency or/and
temperature dependences in the case of a sinusoidal strain-
controlled excitation, the underlying relations being
considered both in terms of phenomenological and physico-
chemical meaningful parameters.

The proposed approach supposes the consideration of
the typical rheological equation

(1)

in terms of ε and σ (the strain and stress, respectively),
where po, p1 and q0, q1 are the nominal temperature
dependent rheological parameters, the time contribution
being stated by means of time derivative term, Dt=∂/ ∂t.

As a matter of fact, it results that this model is a three -
parameter one, i. e.,

(2.1)

with the corresponding characteristic rheological
parameters Ao(T), A1(T), B1(T) given by

(3)

Taking into account the intrinsic linearity of considered
rheological equation from the viewpoint of time-derivative
operator, Dt, in case of a controlled sinusoidal dynamic
strain,

(4)
where εo is the strain amplitude and ω - the angular
frequency of the given sinusoidal strain - the corresponding
dynamic form results as (Dt = iω)

(2.2)

The involved stress - with the resulting amplitude σo,
and of same frequency as that of the strain and, as result of
internal friction, with a phase lag, δ, between the excitation
and response - is

(5)

Accordingly, by definition

(6)
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is the complex modulus, M’ and M” being the storage and
loss moduli, respectively. On the other hand, for the
absolute (viscoelastic) modulus, |M*|, results

  (7)

whereas βM = tan δM  stands for the corresponding loss
factor, being given as

  (8)

From a “hierarchical” viewpoint, it appears that in the
case of ε - controlled excitation, M’, M” are the direct
primary rheological quantities, whereas |M*|, βM are the
derivate primary ones. Moreover, the complete set of ε
rheological quantities also includes the well defined
compliance-like quantities - the corresponding storage
compliance, J’M,

  (9)

loss compliance, J”M,

  (10)

and absolute compliance, |J*
M|,

  (11)

which are termed as secondary rheodynamical quantities.
In order to include, besides the frequency contribution,

that of temperature one - it is suggested that, in principle,
the deformation rate could be expressed by an Arrhenius-
like relation [12-17], the most frequently used form, at least
as a preliminary evaluation tool, being an exponential one
defined for the ε −controlled relaxation time, τε , as

  (12)

where  τε∞= τε(∞) is the prefactor (pre-exponential factor)
- denoting the value of the corresponding relaxation time
at infinite temperature (if θε  ≠ 0), while  θε = Aε/R - i. e., the
ratio of the ε − Arrhenius activation energy, Aε, to the
universal gas constant, R = 8.314 J / (mol* K)  - points a
“virtual” ε temperature.

Consequently, the complete “frequency and
temperature” form of rheodynamic equation arises as

         (2.3)
where

 (13)

the meaning of different rheological parameters being
expressed in terms of the storage modulus at low (l) and
high limit (h) frequency, respectively, and the ε −
characteristic relaxation time.

Results and discussions
As results from the general form of the dynamic

rheological equation (2.3), there are distinct dependences
of characteristic rheodynamical quantities on frequency
and temperature, respectively. Thus, for the complete set
of seven above quoted rheological quantities, two
circumstances are to be taken into account - on the hand,

that of frequency dependence at given temperature, which
corresponds to isothermal circumstances, and, on the other
hand, that of temperature dependence, when the data are
obtained in isochronal circumstances.

By using the general definition of temperature and
frequency dependences of rheodynamic quantities, the
characteristic relations are indicated by a semicolon (;),
where the first term denotes the continuous variable, while
the second one appears as a  parameter.

In the case of a sinusoidal strain-controlled excitation,
the complete set of primary and secondary rheodynamic
quantities includes the corresponding general and
characteristic forms as follows.

Direct primary quantities
- The general form of the storage modulus results, on

the basis of (2), (6) and (13), as

(14)

Accordingly, for the frequency dependence at given
temperature, T = T, one obtains

(14.1)

and

(14.2)

in the case of temperature dependence at given frequency,
ω =ω .

- The general expression of the loss modulus is, by taking
into account (2), (6) and (13),

(15)

Correspondingly, for the ω - dependence at fixed
temperature, T=T,

(15.1)

(17.2)
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and

(15.2)

in the case of T - dependence at given frequency, ω=ω.

Derivate primary quantities
- The general form of the absolute modulus results, by

using (2), (8) and (13), as

(16)

Accordingly, for the frequency dependence at given
temperature, T=T, one obtains

 

and

                (16.2)

in the case of temperature dependence at given frequency,
ω =ω.

- The general expression of the loss factor is, given (2),
(8), (13),

(17)

while for the ω - dependence at fixed temperature, T=T,

(17.1)

and

in the case of T - dependence at given frequency, ω =ω.

Coresponding secondary quantities
- The general form of the corresponding storage

compliance results, on the basis of (2), (9) and (13), as

  (18)

whereas for the frequency dependence at given
temperature, T=T, one obtains

  (18.1)

and

                          (18.2)

in the case of temperature dependence at given frequency,
ω =ω.

- The general expression of the corresponding  loss
compliance is, taking into account (2), (10) and(13), given
as

           (19)

while for the ω - dependence at fixed temperature, T=T,

       (19.1)

and

(16.1)
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(19.2)

in the case of T - dependence at given frequency, ω =ω.
- The general form of the corresponding absolute

compliance results, given (2), (11) and (13), as

(20)

whereas for the frequency dependence at given
temperature, T=T, one obtains

and

              (20.2)

in the case of temperature dependence at given frequency,
ω =ω.

The explicit analytical relations of the complete set of
seven rheodynamical quantities reveal both the potential
consequences - from the viewpoint of different forms of
considered dependences - as well as the effectively ones -
as a start up point for the identification of the independent
values corresponding to characteristic - extremum
(maximum and minimum) and inflection points.

Thus, in the case of isothermal circumstances, T=T, the
frequency dependence at strain-controlled conditions
shows:

- for the direct primary rheodynamical quantities -
 - that the ω - terms appearing in the

characteristic ratios are of same order (2 to 2) in the case
of M’, whereas it is a dissimilar one, (1 to 2), for M”;

- for the derivate primary rheodynamical quantities -
 - the ratio is (2 to 2), in the case of

|M*(ω,T), and a (1 to 2) one for βM(ω, Τ);
- for the corresponding secondary rheodynamical

quantities -, ,  - the values
of characteristic ratios are (2 to 2) in the case of

while  it is (1 to 2) for J”M(ω, T).
On the other hand, in the case of isochronal

circumstances, ω =ω, at strain-controlled conditions, the
temperature dependence points out:

- for the direct primary rheodynamical quantities,
, the T - exponentials appearing in the

characteristic ratios  reveals that in the case of M’ the terms
are of same order (2 to 2), but dissimilar ones (1 to 2) for
M”;

- for the derivate primary rheodynamical quantities -
 - the order of exponential terms which

appear in the characteristic ratios is (2 to 2) in the case of
|M*(T; ω)| while the (1 to 2) result is obtained for βM(T; ω)

- for the corresponding secondary rheodynamical
quantities , - the
characteristic ratios of exponential terms are given as (2
to 2)  in the case of and (1 to 2) for

Conclusions
The explicit analytical relations obtained in the case of

dynamic strain-controlled processes for both the primary
rheological quantities as well as for the corresponding
secondary ones tell us well definite qualitative features
concerning the frequency or/and temperature
dependences.

Moreover, it is revealed the natural contribution of
frequency dependence in isothermal circumstances,
whereas for the temperature dependence in isochronal
circumstances  well defined contribution of exponential
terms containing the activation energy (virtual
temperature) are present.

Furthermore, the direct thermorheodynamic quantities
- the storage and absolute moduli - on the hand, as well as,
on the other hand, the corresponding ones - the storage
and absolute compliances - are typical in their frequency
dependence, the situation being somewhat comparable
from the standpoint of temperature dependence.

Henceforth, in the case of the other considered direct
thermodynamic quantities, including the loss modulus and
the loss facor, as well as for the corresponding loss
compliance, the frequency or temperature trends appear
to be similar.

Definite peculiarities of the full set of characteristic
thermorheodynamic quantities are to be identified by taking
into account distinct frequency or/and temperature
dependences on the basis of numerical simulation route.

References
1. LAKES, R. S., Viscoelastic Materials, Cambridge Univ. Press,
Cambridge, 2009, p. 55-89, 207-270.
2. BRINSON, H. F., BRINSON, L. C., Polymer Engineering Science and
Viscoelastici- ity, Springer, New Yok, 2008, p. 221
3. TSCHOEGL, N. W., Phenomenological Theory of Linear Viscoelastic
 Behavior, Springer, New York, 1989, p. 69
4. FERRY, J. D., Viscoelastic Properties of Polymers, Wiley, NewYork,
1980
5. ALFREY, T., Mechanical Behaviour of High Polymers, Interscience,
New York, 1948, p. 103
6. MANLEY, T. R., Pure & Appl. Chem., 61, 1989, p. 1353
7. LI, Y., XU, M., Mech. Time-Depend. Mater., 10, 2006, p. 113
8. LI, Y., XU, M., Mech. Time-Depend. Mater., 11, 2007, p. 1
9. SWAMINATHAN, G., SHIVAKUMAR, K., J. Reinf. Plast. Comp., 28,
2009, p. 979
10. PAVEN, H., Mat. Plast., 40,no. 4,  2003, p. 171
11. PAVEN, H., Mat. Plast., 43, no. 4, 2006, p. 345
12. KRAUSZ, A. S., EYRING, H., Deformation Kinetics, Wiley-
Interscience, New York, 1975.p. 6-28, 107-142
13.] KARGIN, V. A., SLONIMSKY, G. L., BRIEF ESSAYS ON THE PHYSICS
AND CHEMISTRY OF POLYMERS, Himija, Moscow, 1967 (in Russian).
14. ARRHENIUS, S., Z. Phys. Chem., 4, 1889, p. 226
15. BECKER, Phys. Z., 26, 1925, p. 919
16. ALEXANDROV, A. P., LAZURKIN, Yu. S., Acta Physicochim., 12,
1940, p. 647
17. PREVORSEK, D., BUTLER, R. H., Intern. J. Polymeric Mater., 1,
1972, p. 251

Manuscript received: 10.06.2010

(20.1)




